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Abstract— This paper introduces a new mobile robot local-
ization solution consisting of two main modules: a Particle-
Filter based Localization (PFL) and a Reinforcement-Learning
based map updating, integrating relative measurements and
absolute indoor positioning sensor (A-IPS) data. Concerning
localization using 2D-LiDARs, featureless areas are known to
be problematic. To solve this problem a classic PFL approach
was modified to incorporate A-IPS position measurements in
the prediction and update stages. The localization approach
has the particularity of including the possibility of updating
the map whenever major modifications are detected in the
environment in relation to the current localization map. Due
to the random sampling-based nature of the PFL, an update
solution is not trivial as in classic mapping approaches since
small inconsistencies in the estimated pose can lead to erroneous
map associations. The proposed method learns to decide by
assigning higher rewards the greater is the overlap between
the map and the 2D-LIDAR scans, via RL, and then a proper
update of the map is achieved. Validation of the proposed
pipeline was carried out in a differential drive platform with
algorithms developed in ROS. Tests were performed in two
scenarios in order to assess the performance of both the
localization module and the map update stage. The results show
that the proposed method offers localization improvements in
relation to known approaches, and consequently the concept
validity and promising perspectives for the proposed map
update decision framework.

I. INTRODUCTION

Localization in robotics has been the focus of extensive
research, with wide applications ranging from Automated
Guided Vehicles (AGVs) to service and social robots. There
have been many proposed solutions for the localization of
these robotic systems and, within those solutions, laser-
based localization techniques are some of the most popular.
Although laser-based techniques mainly use laser scanners
(or 2D LiDARs), other sensor modalities are also used to
complement some of the technology limitations. Most of the
present localization methods rely on multimodal sensor data,
because laser-based systems alone struggle in accurately
localizing robots in featureless areas (e.g., corridors) [1],
[2], or in areas with multiple dynamic obstacles. Besides
LiDARs, some of the most popular sensors used in indoor
localization are cameras, wheel encoders (odometry), and
Inertial Measurement Units (IMUs). The use of absolute
indoor positioning systems tends to be indispensable in
order to have a more robust positioning system when in the
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presence of featureless areas where other ‘local’ approaches
such as laser-based are prone to fail. Within laser-based
approaches, Particle Filter (PF) localization approaches have
been widely adopted due to a low software implementation
overhead [3] but, due to lack of sensor information in real-
world circumstances, the hypothetical poses (particles) can
diverge from the real pose [4]. One of the most popular PF
methods is the Adaptive Monte Carlo Localization (AMCL),
which uses pose data (e.g., odometry), a prior occupancy-
grid map and laser scanner data to estimate a mobile robot’s
pose. An open version of the AMCL algorithm is available on
ROS [5]. However, the available version was only designed
to deal with two data inputs (pose and laser scanner data
sources). When deploying a robot in a new environment
it is common to provide an a priori representation. Some
methods are robust to small changes in the environment but
for multiple changes the pose estimates tend to diverge as
the overlaps from the laser scan and the representation are
reduced. Although occlusions caused by dynamic elements
in a scene are a complex problem, static elements that were
recently added to the scene can be updated and aid the
localization process (e.g., trash cans, cabinets or tables).
Using learning techniques, such as RL, some patterns can
be learned in order to assess if a laser scan can be updated
in the environment representation.

In this work a new localization approach is proposed,
developed in ROS environment, which supports pose data,
data from an absolute indoor positioning system (A-IPS),
and laser scanner’s measurements. The localization approach,
henceforth named RLmPFL (Reinforcement-learning based
mapping in a Particle-filter based localization) approach, uses
an a priori occupancy-grid map that is updated by a RL
inspired map update decision approach. It is important to
note that this work does not intend to be a replacement for a
Simultaneous Localization and Mapping (SLAM) approach,
but to be a complementary module that can be deployed in
structured or semi-structured scenarios in order to reliably
update a localization’s map or used together with a SLAM
approach to attain a more reliable update.

II. RELATED WORK

Within localization methods for mobile robots some of
the most well-known methods are based on the following
stochastic filters frameworks [6]: the Extended Kalman Filter
(EKF), the Unscented Kalman Filter (UKF), Monte Carlo
Localization (MCL) or Particle Filter (PF) and AMCL. In the
MCL/PF method, which is of particular importance in this
work, the representation of the probability density function
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Fig. 1. Block diagram of the proposed RLmPFL approach. A and B represent respectively relative measurements and absolute measurements.

(PDF) is made by maintaining a set of samples (particles)
that are randomly drawn from the PDF [7]. This method
is able to represent multi-modal distributions and can be
applied to both local and global localization problems [6].
PFs are easily implemented, which makes them an attractive
solution for localization methods in mobile robotics. The
benefits of a multi-sensor fusion localization approach are
demonstrated in [8]. Information is processed from a laser
range finder, a WiFi card, a compass, and a group of external
cameras. Four metrics are used to evaluate multiple combi-
nations of these four sensors, with the full set of sensors
being the best globally. In order to decrease accumulation of
error during vehicle localization, [9] introduces a multi-point
joint particle filter (MPJPF) method acting upon information
provided by visual odometry (VO) data. The method swaps
the sequence of points used in VO for a simpler, faster
anchor point (AP) representation. A Map-Aware Particle
Filter (MAPF) was presented in [10] to optimize the weight
of particles in a localization method based on map infor-
mation, which is used to construct a proximity map of grid
points. Particles are optimized by selecting those where prior
odometry data does not create a conflict with the proximity
map. Reinforcement Learning has also been combined with
PFs. In [11], a learning framework is proposed that employs
a PF inside a Q-learning RL paradigm. By observing the
expected values of generated particles in the state space it
was possible to isolate those with positive values so the
system could more quickly learn which states produce the
most favorable outcomes. Map update techniques have been
incorporated in SLAM, such as in [12], to improve mapping
accuracy in a dynamic environment by using long-term
memory to distinguish between static and dynamic points
in a 3D map. Alternatively, in [13] a Rao-Blackwellized PF
SLAM approach was proposed where each particle in the PF
keeps a map proposal and is independently updated.

RL-based techniques have been employed in map update
approaches as well. In [14], SARSA (a RL method) is used to
improve the performance of map-merging in a Multi-Robot
SLAM problem that is applicable to the navigation of a
large environment. In [15] mapping errors caused by robot
motion were addressed. A policy search using a dynamic
programming method is developed to create a RL model
of trajectory control on a one-step policy basis. Reward
is attributed based on the variation, between trials, of the
uncertainty of robot pose estimation at each way-point in
the trajectory. In [16], RL is integrated in a SLAM approach

where RL is used in a global training prior the navigation
takes place to create a global map of valid states and actions.
These are loaded on request whenever the robot is in a
specific location, creating a local RL model that can be
inexpensively used for local motion planning. Concerning
the use of indoor positioning systems, in [17] a PF approach
fusing IMU/inertial and ultra wide band ranging information
was proposed to track the relative positioning of multiple
users.

III. METHODOLOGY AND PROPOSED METHOD

In this section the proposed RLmPFL approach is pre-
sented in detail (see Fig. 1).

A. Sensor Data Processing

The design of a multimodal sensor fusion approach re-
quires the correct pre-processing of the incoming sensor
measurements. Since not all sensors share a common rep-
resentation and a common frame, absolute positioning and
relative pose measurements were considered. Also, to avoid
wasting resources in redundant localization estimates, taking
into account the different rates and the sampling-based nature
of the PF, a threshold had been defined for the relative sensor
data, which only activates the localization method when a
defined minimal translation and/or rotation is accumulated
by this module. The threshold values ∆d and ∆θ serve to
preclude the sensor data from being used unless one of
those values of displacement has been reached since the
last estimated pose. An absolute positioning measurement
always activates the particle filter loop. The motion model
presented in [6], where the robot’s motion is defined by a
translation and two rotations (δtrans, δrot1 and δrot2), is used
to compute the displacement between consecutive relative
measurements. A local pose is then updated based on that
model. If one of the thresholds for angular or linear displace-
ment is met, the local translation and rotations are used to
update the PF loop. The relative sensor accumulation is reset
after each loop.

B. KLD-Based Particle Filter Localization

Let the set of particles X at a given step be defined
as X = {xk,wk},k = 1, · · · ,np where xk = (xk,yk,θk) is the
particle’s pose/state, wk a particle’s weight and np the number
of particles. Each particle corresponds to a pose hypothesis
of the robotic platform’s location. As presented in [18] and
shown in Fig. 3, a particle filter can be represented by
three main procedures; 1) Prediction of the next particle’s
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state given the sensor measurements; 2) Update of each
particle’s weights considering an observation of the envi-
ronment; 3) Resampling of the particles taking into account
the particle’s weight distribution. Other important procedures
are the initialization of resources (Initialization) and the
pose estimation procedure (Pose Estimation). The proposed
PF builds on the Kullback-Leibler distance (KLD) method
[18]. The main modifications presented by this PF-based
localization approach are in the prediction step, where it is
possible to receive relative measurement data (Odometry)
and absolute position measurements (A-IPS), and then fuse
the data to predict the next state of the particles. Also, in the
update stage, the absolute sensor is used to compute each
particle’s weight. The structure of the filter is shown in Fig.
3.

1) Prediction: The prediction stage is responsible for the
computation of each particle’s next state given the sensor
measurements. Considering the aforementioned sensor data
processing pipeline, multiple types of data might be available
and depending on those types, different fusion methods
can be applied. Linear and angular displacements for the
relative “sensor” from the pre-processing stage are con-
verted into δtrans, δrot1 and δrot2. A sampling-based stratified
approach (σA−IPS + σO = 1) inspired by [17] is taken to
handle multiple sensor data where the sensor is randomly
picked considering the sensor’s stratified representation (e.g.,
considering σA−IPS = 0.1 and σO = 0.9, this means that

10% of the particles are updated with A-IPS data while
90% of the particles are updated with relative data). For
relative measurements we assume the motion model with
noise described in [6]:

δ̂trans = δtrans−∼N (0,α2
1 δrot1 +α2

2 δtrans)

δ̂rot1 = δrot1−∼N (0,α2
3 δtrans +α2

4 δrot2)

δ̂rot2 = δrot2−∼N (0,α2
1 δrot1 +α2

2 δtrans)

(1)

x[n]t =


x[n]t = x[n]t−1 + δ̂trans cos(θ̂t−1 + δ̂rot1)

y[n]t = y[n]t−1 + δ̂trans sin(θ̂t−1 + δ̂rot1)

θ
[n]
t = θ̂t−1 + δ̂rot1 + δ̂rot2

(2)

The state of a particle n at iteration t, selected for A-IPS
update using the stratified approach (see Correction in Fig.
3), is given by

x[n]t =


x[n]t = xip−∼N (0,σ2

x )

y[n]t = yip−∼N (0,σ2
y )

θ
[n]
t = θ̂ R

t−1−∼N (0,σ2
θ
)

(3)

where (xip,yip) is the A-IPS position measurement and
(σx,σy,σθ ) noise-dependent parameters.

2) Update: The update stage computes the weight (wt =
p(zt |xt)) of a particle by using an adaptation of the “beam
range finder model” algorithm described in [6]. A standard
approach, used to avoid redundancy and not waste processing
resources, would be to process only a subset of the laser scan
points to compute the new weight of a particle. The modified
“beam range finder model” [6] is mathematically expressed
as

wt = e
−


∣∣∣∣(x[n]t −pip

∣∣∣∣
σip


2

+
nl

∑
i=1

e
−


∣∣∣∣(po

s→M
si)−si

∣∣∣∣
σr


2

(4)

where σr and σip act as shape parameters, nl is the number
of processed scan points, pip an A-IPS position measurement
and →

M
represents a raytracing operator (in the World frame)

that performs a raytracing-like operation between the sensor
frame origin (po

s ) and a laser scanner point si in the environ-
ment representation M, and provides a collision point. The
first occupied cell in the raytracing operation represents the
expected position of an obstacle; if no occupied cell is found
then po

s is returned.
3) Resampling: Contrarily to the classical particle filter,

the KLD algorithm forces each particle to be iterated and the
KLD condition is evaluated until the number of particles is
enough to represent the expected distribution or a maximum
number of particles (nmax) was reached. To this end, the
first step is to sort the particles from the particle’s set with
the lowest to the one with the highest normalized weight.
After this, for each iteration of the KLD loop a particle is
sampled, and goes through the prediction and the update
stages, until the number of processed particles is equal to
nmax or the KLD condition is reached. The particles in this
work are sampled according to the Multinomial Resampling
method [19]. In order to compute the KLD condition, a
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2D grid representation was employed where each cell was
represented by an angular histogram.

4) Pose Estimation: After performing a complete KLD
iteration with the new particle states and their normalized
weights, the robot’s pose is computed according to the
following expressions [20]:

x̂R
t =



x̂R
t =

np

∑
i=1

x[i]t w[i]
t

ŷR
t =

np

∑
i=1

y[i]t w[i]
t

θ̂ R
t = arctan2(

np

∑
i=1

sin(θ [i]
t )w[i]

t ,
np

∑
i=1

cos(θ [i]
t )w[i]

t )

(5)
where x̂R

t is the estimated robot’s pose.

C. Update Decision

Due to the sampling nature of the PFL, the update of
the map is not trivial. If the particles are scattered all over
the map, the map may be incorrectly updated. The same is
valid for featureless areas such as corridors where the update
metric in the PFL may increase the weight of unwanted
particles. The proposed approach, using RL, aims to learn
patterns (represented by states) between the last laser scan
(L) reading and the actual environment representation (M).
The proposed RL approach consists of two stages: an offline
learning stage and an online decision stage as shown in
Algorithm 1.

For the learning stage, given the pose from the aforemen-
tioned PFL method (x̂R

t ), the environment model and the
last laser scan (L), the first step consists in computing the
RL states (GetStates). To compute the states, the first step
consists in generating a ternary (occupied, unknown, free
state) local grid-map for each range in the laser scan. In
this context, a local grid-map is a representation centered

in the laser scan sensor’s frame while a global grid-map
is the environment representation. The local grid-map is
all initialized with unknown state. If a range is higher
than a maximum distance, a ray-tracing approach (based
on the Bresenham’s algorithm) is employed to compute all
the free cells between the sensor’s origin frame and the
measured point (i.e., the range is converted from polar to
Euclidean coordinates). Otherwise, if the range is smaller
than a maximum distance and larger than a minimum safety
range, the point is marked as occupied and the ray-traced
cells between the sensor’s origin and the point are marked
as free. After the generation of the local grid-map, two sets
of free cells and occupied cells are generated, a translation
is applied to each point in the sets using the pose (x̂R

t ) - a
downsampling is applied at this stage to reduce the number
of points. For each new point in each set, a hash value is
computed considering the surrounding obstacles (in a 3×3
window). Each hash value is unique and represents a state
to be modeled in one of two Q-Matrices, one that learns
from the environment configuration centered in free points
and another that learns from the environment configuration
centered in occupied cells. The proposed RL considers a
3× 3 mask centered in each of the aforementioned points
(see Fig. 4). This gives a total of 512 possible combinations
of occupied and free cells. Given the two sets of identifiers
(S f ree and Socc), the following step consists in computing
the weight, or overlapping score, between the environment
representation and the laser scan converted to Euclidean
points and projected in the World frame (PW ). The score
(GetScore) is calculated as

w =
∑
|PW |
j=1 (|xi

near−Pi
W |∧0)

|L|
(6)

where xi
near is the nearest occupied position to Pi

W in the
environment representation. The reward (GetReward) is
computed from the score and is expressed by

R(w) = K1 +
K2

1+ eK3(w−K4)
(7)

where K1, K2, K3 and K4 are behaviour-dependent defined
values. The action that originated the reward can systemat-
ically be computed from the overlapping score based on a
threshold (GetAction).

For each set of free and occupied identifiers, the corre-
sponding Q-Values are updated. If an identifier is not present
in a Q-Matrix, its Q-Value is initialized with zero. The update
follows the classic Q-Learning update equation. The Q+

f ree
and Q+

occ are the previous iteration maximum Q-Value (for
the free and occupied RL models respectively) for any action
of the processed states and are updated at the end of the
learning stage.

The decision stage (see Fig. 5) uses the two models trained
in the previous stage to make a decision on whether a given
laser scan should be used,or not used, to update the environ-
ment model. The first step consists of computing the states
for each occupied and free cells in the local representation
(GetStates); in this step the corresponding points in the



Algorithm 1: MapUpdateRL method.
Input: Environment Model (M), Pose (x̂R

t ), Laser scan (L), Decision
threshold (td );

1 Initialization:
2 Q f ree ← /0, Qocc ← /0, Q+

f ree ← 0, Q+
occ ← 0;

3 Learning Loop:
4 S f ree,Socc ← GetStates(M,L,x̂R

t );
5 w ← GetScore(M,L,x̂R

t ); R ← GetReward(w); a ← GetAction(w);
6 q+f ree ← 0, q+occ ← 0;
7 foreach s ∈ S f ree do
8 if s 6∈ Q f ree then
9 Q f ree(s) ← 0(|A|×|1|);

10 Q f ree(s,a) ← Q f ree(s,a)+α(R+Q+
f ree−Q f ree(s,a));

11 q+f ree ← max(q+f ree,Q f ree(s, :));

12 foreach s ∈ Socc do
13 if s 6∈ Qocc then
14 Qocc(s) ← 0(|A|×|1|);

15 Qocc(s,a) ← Qocc(s,a)+α(R+Q+
occ−Qocc(s,a));

16 q+occ ← max(q+occ,Qocc(s, :));

17 Q+
f ree ← q+f ree, Q+

occ ← q+occ;
18 Decision:
19 D ← 0(|A|×|1|);
20 S f ree,Socc,Pf ree,Pocc ← GetStates(M,L,x̂R

t );
21 foreach (s, p) ∈ (S f ree,Pf ree) do
22 a ← argmax

ai∈A
Q f ree(s,ai);

23 D(a) ← D(a) + DecisionWeight(||p||);
24 foreach (s, p) ∈ (Socc,Pocc) do
25 a ← argmax

ai∈A
Qocc(s,ai);

26 D(a) ← D(a) + DecisionWeight(||p||);

27 D ← D

∑
|A|
i=1(D(i))

;

28 if ∃ D(ai) ≥ tRL ,i = 1 · · · |A| then
29 a ← argmax

ai∈A
D(ai);

30 else
31 a ← -1;

Output: a

Euclidean space for each state are also computed. For each
state, the decision is obtained based on the computation
of the argument of the maximum Q-Value for that state.
A decision set (D) with the same size as the number of
actions is initialized with zero and is updated by each state’s
computed decision. A penalty factor wd is also computed
in order to give more importance to decisions closer to
the sensor frame origin, wd = K5 +

K6
1+e−K7(||d|−K8 |)

, where
K5, K6, K7 and K8 are behaviour-dependent weights and
d is the distance between the sensor frame origin and the
correspondent state’s position. After processing all the states,
the decision set is normalized and if one of the decisions
is greater than a given threshold (tRL), the corresponding
decision is used, otherwise a non-update decision is issued.

D. Map Update

The environment representation uses a 2D occupancy grid
with log odds update [21], [6]. The probability that the cell
c is occupied given the observations z1:t is given in log odds

l(c|z1:t) = log
p(c|zt)

1− p(c|zt)
− log

p(c)
1− p(c)

+ log
p(c|z1:t−1)

1− p(c|z1:t−1)
(8)

with p(c) the prior probability (p(c) = 0.5), p(c|z1:t−1) the
previous estimate and p(c|zt) denotes the probability that the
cell c is occupied given the measurement z.

IV. EXPERIMENTAL VALIDATION

The experimental platform used in the validation of the
proposed approach is a differential drive AGV prototype
based on the InterBot architecture [22]. The platform is
equipped with an Hokuyo UTM-30LX/LN laser scanner, a
Xsens Mti-G IMU, and two encoders with 980 pulses per
revolution. The drive of the two DC motors is performed
by a RoboteQ SDC2130 power driver. The platform is also
equipped with a laptop running ROS [5] responsible for data
processing and communicating with the sensors and actuators
of the platform. The parameters used for the validation of
the proposed RLmPFC localization approach are presented
in Table I.

A. Localization

The A-IPS system from Marvelmind Robotics was de-
ployed in both scenarios shown in Fig. 6. A mobile beacon
had been mounted on the robotic platform and static beacons
were placed on the walls with at least 3 beacons always
in line-of-sight. Initial tests with the technology reported a
precision of 10−15 cm in line-of-sight. With occlusions, the
error in the positioning increases as shown in Fig. 7. In the
scenario shown in Fig. 6a, 6 static beacons were deployed.
In the scenario shown in Fig. 6b, 11 static beacons were
deployed with the leftmost area of the map without beacons.
To compare the localization methods, the laser scan is used
to estimate an overlapping score (M1), by computing the
distance of the scan point to the nearest occupied cell in the
a priori map (the score decreases with the increase of the
distance) using a Gaussian function (NM) with zero mean

TABLE I
VALIDATION PARAMETERS.

Parameter Value Parameter Value Parameter Value

K1 -0.5 tRL 0.99 α1 0.0208
K2 1.0 txy 0.01 α2 0.001
K3 3 tcθ 0.12 α3 0.0208
K4 0.6 td 0.1 α4 0.0802
K5 0.1 tθ 0.01 σip 0.05
K6 0.9 σx 0.5 σr 0.1
K7 -3 σy 0.05 nmax 1740
K8 5 σθ 0.2 σM 0.1
α 0.5 αA−IPS 0.1 - -

TABLE II
M1 AVERAGE AND THE RMSE, IN (%), EVALUATION FOR FIG. 6A.

Method O EKF(O) EKF(O,IMU) AMCL(O) RLmPFL(O,A-IPS)

MeanM1 15.71 25.48 28.29 68.49 71.61
RMSEM1 84.29 74.51 71.71 31.51 31.03
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and σM standard deviation

M1 =
∑
|S|
i=1 ∑

|si|
j=1 NM(0, |x j

near− si j|)
|S|

. (9)

To assess the performance of the proposed pipeline, the
scenario in Fig. 6a was used. The following methods where
evaluated: Odometry (O); EKF with Odometry (EKF(O));
EKF with Odometry and IMU (EKF(O,IMU)); AMCL ROS
package using Odometry (AMCL(O)); and the proposed
approach (RLmPFL(O,A-IPS)). The results for the scenario
are shown in Fig. 7 and Table II.

The values in Table II are normalized by the number of
laser scan readings (1080 readings). Using the same parame-
ters in both the proposed approach and the AMCL package,
the presented results show that the proposed localization
approach provides better results, in particular, due to the
use of A-IPS the convergence of the particles was faster
in the initial steps and when odometry was not enough.
Localization results in a more challenging scenario (from
Fig. 6b) are described in the next subsection.

B. Map Update

To validate the proposed RL map update decision ap-
proach, the results with three methods are compared: no
decision module i.e., classic mapping approach expressed by
(8), confidence interval, and the proposed RL approach. The
confidence interval approach is inspired in [23]; the first step
consists in computing the weighted mean and variance for
(x,y,θ) and the current set of particles in the PF,

x̄ =
np

∑
n=1

xnwn

ȳ =
np

∑
n=1

ynwn

θ̄1 =
np

∑
n=1

wn sin(θn)

θ̄2 =
np

∑
n=1

wn cos(θn)
(10)

σ2
x =

np

∑
n=1

wn(xn− x̄)2

σ2
y =

np

∑
n=1

wn(yn− ȳ)2

σ2
θ1

=
np

∑
n=1

wn(sin(θn)− θ̄1)
2

σ2
θ2

=
np

∑
n=1

wn(cos(θn)− θ̄2)
2

(11)

where the confidence intervals are computed as

Cx =
[
x̄−2

√
σ2

x , x̄+2
√

σ2
x
]
,Cy =

[
ȳ−2

√
σ2

y , ȳ+2
√

σ2
y

]
Cθ =

 atan2(θ̄1−2
√

σ2
θ1
, θ̄2−2

√
σ2

θ2
)

atan2(θ̄1 +2
√

σ2
θ1
, θ̄2 +2

√
σ2

θ2
)

 (12)

while the update decision is

a =

{
1 , |Cx +Cy| ≤ txy∧|Cθ | ≤ tcθ

0 , otherwise. (13)

The proposed RL approach requires a training step; thus,
the scenario from Fig. 6a was used to train the free and
occupied RL models. A simulation-environment was created
to generate random robot poses inside the scenario and com-
pute a virtual laser scan. Samples were taken from optimal
conditions (the scan completely overlapped the map) and in
conditions with noise added to the laser scan, actions were
computed accordingly. The results for the three methods
are shown in Fig. 8. Both maps in Fig. 6 were generated
with a modified Hector SLAM [24] package and annotated
by hand in order to fill small “gaps”. In particular, for the
map in Fig. 6b, artificial landmarks where added in some
of the featureless areas (corridors) in order to aid the scan
matching process of the Hector SLAM package. These maps
where generated with datasets from previous works [22], and
parts of the scenario in Fig. 6b were changed over time,
such as the position of trash cans. For each method, at each
iteration an update of the map was only considered in a
radius of 5 meters. The obtained results show that it is not
suitable for a critical application to directly map using only
the obtained pose as small deviations in the estimate of the
robot’s orientation can lead to the complete failure of the
mapping approach. The use of a confidence interval can
provide interesting results to some extent but this approach
can also fail in featureless regions or areas where the A-
IPS provides erroneous or absent measurements. With the
proposed approach the map was updated without modifying
the baseline structure of the map and with the position of
some the elements in the scene correctly modified. In Fig. 9
some of the updated areas are highlighted. It is important to
note that due to the small number of features in the bottom
part of the map, the number of updates is almost non existent.

V. CONCLUSION

In this paper, a new approach is developed by leveraging a
PF-based method in order to combine measurement from an
absolute indoor positioning system in order to increase relia-
bility on localization. Additionally, a map update framework
based on Reinforcement Learning (RL) has been proposed
as well. The framework presented here has the key aim of
providing a robust solution for indoor long term applications
such as service robots and/or AGVs - industrial environ-
ments. The proposed localization and map update approaches



Fig. 8. Grid-map representations after map update for the evaluated
methods. The localization of the robotic platform is marked in light red, and
in green the map update points. From top to bottom: no decision module,
confidence interval decision and the proposed RL approach.

Fig. 9. Grid-map representation from Fig. 6b with the updated areas
highlighted.

achieved promising results with the localization providing
a stable and accurate pose, and the map update strategy
obtained a very consistent update of the map.
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